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1 Problem Description

1.1 Adaptive Video Streaming

Adaptive video streaming is critical for video websites to provide smooth and high-quality
videos streaming experience to their customers. In a typical setup, the server encodes the
video with different bitrate settings, then split each of the output videos into short chunks.
The video streaming client fetches those chunks and puts them into its local buffer, then
the player plays the chunk to the viewer. At each boundary between two chunks, the client
needs to select among different bitrates according to current network condition. When the
bandwidth is limited, it fetches low bitrate chunks to make sure the buffer is not drained
so viewer will not have a pause. When network condition is good, it fetches high bitrate
chunks to have high-quality video. The overall goal is to provide highest quality video
without smoothness being compromised.

It is not trivial to develop efficient adaptive bitrate (ABR) selection algorithms, be-
cause the network condition is highly varied, and the choice of selection has long-term
consequences. The algorithm needs to predict what the network condition will be in the
near future, then make decision based on such predictions and the number of chunks in the
buffer. Also the metrics to evaluate the performance are conflicting, some of them value
video quality while others prefer smoothness. Most adaptive video streaming clients use
hand-crafted bitrate selection functions. These methods perform well under designated
conditions, but can fail under unseen networks. Also each of them is usually fixed to
improving only one certain user-experience metric.

1.2 Streaming Algorithms

In this project, the experiment environment we use is GPAC[2]. There are 4 adaptive
streaming algorithms implemented in GPAC: simple buffer-size based algorithm, BBA[1],
BOLA-basic and BOLA-finite [6].

Buffer-based methods selects the bitrates as a function of buffer occupancy. For the
case of simple buffer-based method, it sets a minimum and maximum threshold for the
video chunks buffer. These values are usually 1/3 and 2/3 of the total size of the buffer
size respectively. When the total length of the chunks in the buffer is higher than the
maximum threshold, it selects higher-bitrate chunks to fill the buffer. In the case where
the total length of the chunks is in between both thresholds, the bitrate is not changed.
Otherwise it decreases the quality of next video chunk.

BBA is a type of buffer-size based. The key difference is that this paper introduces
the concept of ”reservoir”. First, we make sure to fill up the reservoir with the minimum
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bitrate. Then, we can increase the bitrate linearly with respect to buffer occupancy. In the
case where the traffic slows down and the buffer might dry before downloading another
chunk of video, the bitrate sets to minimum and fills up again the reservoir. In other
words, in order to avoid any interruption while streaming a video, the buffer occupancy
should be at least the size of the reservoir. It is important to mention that in the GPAC
implementation, the reservoir size is 37.5% of the buffer maximum size.

BOLA is another buffer-size based algorithm that uses Lyapunov optimization to
choose the bitrates and maximizes a quality of experience metric(QoE) and takes into
account previous buffer occupancy observations. We work on two specific types: BOLA
basic and BOLA finite. BOLA basic assumes a condition that video streaming has infinite
length for its derivation. BOLA finite targets smaller videos and uses wind-up and down
phases to be more cautious, it means that it does not try to fill up the buffer too soon and
does not try to keep the buffer full too long.

1.3 Proposed Methods

In this project we will try different methods to evaluate the performance of bitrate selec-
tion algorithms. Based on the observation, we try to compare different algorithms under
different network conditions.

It is also possible to apply machine learning techniques into this problem, since ma-
chine learning models can generalize well if trained properly. If we consider the network
condition and buffer status as the environment, the stream client as the agent, the bitrate
selection operation as the action of the agent, and the cumulative QoE performance as the
reward, the ABR problem can be regarded as a reinforcement learning problem. There
are numerous ways to model the problem, we will be using Q-learning. Formally, for a
given state of the environment s, we try to learn a value function q(s, a), which gives the
expectation of reward r if the agent takes action a at this state. When this value function
is learned, the policy π of the agent will be to take the action of the highest value

π(s) = arg max
a

q(s, a). (1)

The value function is learned through iterations of value update. At time t the state is st,
the agent takes action based on current value function. After the action is taken, the state
changes to st+1, and reward rt is observed. The value function is then updated following

q(st, at)← (1− η)q(st, at) + η[rt + γmax
a

q(st+1, a)], (2)

where η is the learning rate, and γ is the discount factor, both in range (0, 1). When
the number of possible states and actions is limited, it is possible to estimate the value
function as a lookup table. However, when the space of state or action is continuous, q
also has to be a continuous function of s and a. If the value function takes the form of a
deep neural network, it is referred as deep Q-network (DQN)[4]. Here the value function
is a deep neural network Q(s, a;w), where w is the weights of the network. Accordingly,
the network is updated using gradient descent

w← w − η∇w[Q(st, at;w)− rt − γmax
a

Q(st+1, a;w)]2. (3)

Here η and γ are still learning rate and discount factor. w is optimized so the estimated
reward Q(st, at;w) matches rt + γmaxaQ(st+1, a;w).

DQN is not easy to train. And an important part of the training process is the tradeoff
between exploitation and exploration. If the agent always follows the current policy during
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training when taking actions, it will likely be trapped in a local minimum value. So instead
of greedily following the action that has the highest value, at each time step, the agent
will take a random action with probability ε. With probability 1− ε, it takes the current
optimal action. This is called ε-greedy, and the value of ε usually decays over training
episodes.

2 Implementation Details

Our code of implementation at GitHub: https://github.com/zvant/gpac ABS.

2.1 Adaptive Video Streaming Environment Setup

We have setup our experiment environment using GPAC[2] package. It provides MP4Box,
which can be used to prepared the video chunks for adaptive streaming; and mp4client,
which includes fully-functional MPEG-DASH functionalities with several bitrate selection
algorithms. GPAC is compiled on both Linux server and Windows desktop systems.

On the server side, firstly the source video is encoded by the x264 codec into different
resolutions (and therefore different bitrates) using FFmpeg. A stamp that contains the
current playback time and the resolution is also added to each video frame, making it
easier to run the experiments. The audio track is stripped to simplify the problem. For
example, the command for encoding the 720P version of the video is

ffmpeg -i input.mp4 -an -vcodec libx264 -vf "drawtext=text='720P

%{eif\:t\:d}':fontcolor=white:

fontsize=24:box=1:boxcolor=black:boxborderw=5:x=10:y=h-34,

scale=1280:720" 720P_text.mp4

↪→

↪→

↪→

The stamped videos are then re-encoded using specified x264 parameters. This step is
important, since the desired bitrate, interval between key frames, and encoding preferences
are set. Note that if the videos are going to be split into chunks that last S seconds, the
interval between key frames needs to be set less than S. Otherwise the chunks will be
corrupted. A sample command is

x264 --output 720P.264 --fps 24 --preset slow --bitrate 2000 --vbv-maxrate

4000 --vbv-bufsize 8000 --min-keyint 48 --keyint 48 --scenecut 0

--no-scenecut --pass 1 720P_text.mp4

↪→

↪→

MP4Box -add 720P.264 -fps 24 720P.mp4

The generated video files are then split into small chunks using MP4Box. The chunks
from each video is regarded as a track. This process also generates a media presentation
description (MPD) file, which is an XML-based manifest file that contains the length of
the whole video and information of each track. The information includes track ID, data
type, codec, resolution, and bitrate. The command used is

MP4Box -dash 4000 -rap -frag-rap -profile live -out dash.mpd

900P.mp4#video 720P.mp4#video 450P.mp4#video 360P.mp4#video↪→

The MPD file, along with all the chunks, is served over HTTP by a typical HTTP server
program. In our setup NginX is used, since it is a light-weighted fully-functional HTTP
server program.

The mp4client first reads the information in the MPD file, and initialize the video
player. Then it decides which track to select for the next video chunk based on the current
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Figure 1 The Server-Client Architecture of the Setup

bandwidth estimation and buffer status, until reaches the end of the whole video. The
client-server architecture of our setup is illustrated in Figure 1.

We use tc command to simulate different network conditions on the server side. For
example, to set the loss rate on eth0 to 6%, the command is

sudo tc qdisc add dev eth0 root netem loss 6%

To restrict the bandwidth to 10 kbps and the latency to 100 ms, the command is

sudo tc qdisc add dev eth0 root netem rate 10kbit burst 5kbit latency

100ms↪→

2.2 QoE Metrics Measurement

Quality of experience(QoE) is formulated as the sum of bitrates of all video chunks and
it is penalized by two factors. The first one is rebuffering, which is the time between
downloading and playing out the video chunk. The second factor is the absolute difference
between consecutive bitrates. Thus, a generic QoE can be defined as a linear combination
as follows

QoE =
N∑

n=1

q(Rn)− µ
N∑

n=1

Tn −
N−1∑
n=1

|q(Rn+1)− q(Rn)|, (4)

where N is the number of video chunks, Rn is the bitrate in kbps of the n-th chunk, and
q(Rn) is a mapping that depends on the quality perceived. For simplicity, in our case we
use q(Rn) = Rn. Tn is the rebuffering time in ms, and the factor is set as µ = 4.3 as
explained in [3].

2.3 DQN Trainer and Inference Client

The state s is defined as the status of the estimated network throughput (bps), bitrate of
the last chunk (bps), and length of the buffer (ms) of the past 5 time steps. Each of the
values are divided by 10× 6, 10× 6, and 10× 4 to have a comparable scale. So the input
of the DQN is a 15-dimensional vector. The output of the DQN is a 4-dimensional vector,
each dimension represents the value of one of the 4 bitrates. The network has 3 fully-
connected layers, the layers have the shapes of 15× 32, 32× 32, and 32× 4, respectively.
The 1st and 2nd layers are followed by ReLU activation.

The observed reward at each iteration is a weighted sum of the video quality and
smoothness of streaming. The video quality rq is represented by the bitrate (bps) of the
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next chunk divided by 107. The smoothness rs is represented by the buffer size (ms)
divided by 104, since longer buffer size indicates that it is less likely the streaming will be
paused. For a set weight α, the reward is

r = αrq + (1− α)rs. (5)

The DQN model is trained with different values of α = 0.0, 0.5, 0.9, 1.0 to compare.
DQN is trained in an off-policy manner. The weights are updated after each training

episode. The model is trained for 100 episodes, and each training episode is the process of
120 seconds of video streaming, which is 30 video chunks. During each episode, the policy
is fixed, and the client selects bitrate using ε-greedy according to current policy. After the
episode is finished, the weights of DQN are updated using gradient descent. The training
process is summarized in algorithm 1.

Algorithm 1: DQN Training Algorithm

random initialize DQN Q(s, a;w);
train for E episodes, each episode contains T time steps;
set η = 5× 10−4, γ = 0.85;
for ep = 1 . . . E do

initialize transactions set D = {};
set ε = 0.95ep;
for t = 1 . . . T do

get current state st;
select bitrate of next chunk using ε-greedy, get action as at;
get next state st+1 and reward rt;
D = D

⋃
{[st, at, st+1, rt]}

end
for [st, at, st+1, rt] in D do

w← w − η∇w[Q(st, at;w)− rt − γmaxaQ(st+1, a;w)]2;
end

end

The training of the DQN is implemented in PyTorch[5], while the inference of the
network is directly implemented in GPAC using matrix multiplication. At each streaming
episode, the weights of the network is exported into a text file. Then the GPAC client
reads the weights and do the DQN inference. It also stores the transactions into another
text file, which is then read by the training program to update the weights. The main
functionalities are implemented in the functions dash_rl_read_model, rl_inference,
rl_build_state, rl_add_state, rl_get_state, and dash_do_rate_adaptation_rl lo-
cated in the source file src/media_tools/dash_client.c. The training program is lo-
cated in DASH_rl_train directory.

To simulate different network conditions, tc command is used to restrict the network
throughput. On the server side, different levels of packet loss rates λ are used. When
not restricted, the network is regarded as unlimited. 6% loss rate is used for simulating
moderate packet loss. And 16% loss rate is used to simulate highly congested network
conditions. The model is trained with different loss rates to compare its behaviour under
different network conditions.
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3 Experiment Results and Discussions

3.1 Streaming Algorithms Comparison

We use the 4 streaming algorithms and a sample video of 506 seconds total, which is stored
in the server side at 4 video resolutions: 640× 360, 854× 480, 1280× 720 and 1600× 900
and their bitrates levels are: 645 Kbps, 1030 Kbps, 1877 Kbps and 2701 Kbps respectively.
The length of each video chunk is 12 seconds and 24 frames per second.

In the first network setting, we force the server network to drop a fixed percentage of
packets from 2% until 10% and we do not change any other parameter. Also, the traffic
network is not limited. The results are depicted in Figure 2 and we can observed that
regardless of the method, the normalized QoE drops drastically after around 6%. Also,
BOLA does a better job because its Lyapunov optimization targets directly the video
quality as well as minimizing rebuffering time.

In the second network setting, we limit the maximum value of the simulated bandwidth
throttling as seen in the top plot of Figure 3 and it changes every 60 seconds. The idea
is to explore how the streaming algorithms change the bitrate selection and the buffer
occupancy over time. In the initial minutes when there is a slow traffic network, BOLA
does suffer rebuffering. BBA instead performs better because it always cares about filling
up the “reservoir” (fraction of the total buffer) with the lowest bitrate and that quality is
enough for this slow network traffic. However, in the next minutes when the server have a
higher network traffic, BOLA performs better because it can download video chunks with
high bitrates and the buffer has always content to play. In the early and later minutes,
simple buffer-based method does a decent job because it does not suffer of rebuffering time
but it sacrifices the bitrate quality.

In summary, given this particular network setting of low packet loss rate, BOLA per-
form better than the rest. Otherwise, no other method works well. When we have control
of the bandwidth throttling, in low network traffic conditions BOLA does not work prop-
erly because of rebuffering. On the other hand, BBA can reach high bitrates but in longer
time.

2 3 4 5 6 7 8 9 10
Packet loss rate (%)

0.2

0.4

0.6

0.8

1.0

Qo
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Simple buffer-based
BBA
BOLA basic
BOLA finite

Figure 2 Normalized QoE for different fixed packet losses rates

3.2 DQN Behaviour

In our setting, we use 4 different video resolutions: 640 × 360, 800 × 450, 1280 × 720,
and 1600 × 900. Their bitrates are 776 Kbps, 971 Kbps, 1944 Kbps, and 2724 Kbps,
respectively. And the duration of the video chunks is set to 4 seconds. After training the
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Figure 3 Evolution of bitrate selection and buffer size over time in a simulated band-
width throttling of the server network

DQN for 100 episodes, the model is tested in the same network condition as training time.
The client select the bitrate of next video chunk greedily based on the learned DQN (e.g.
ε = 0). We define the behaviour of the DQN model as the bitrate selection of the first 20
chunks. The quality of streaming q is defined as the averaged bitrate of fetched chunks.
The smoothness of streaming s is defined as the seconds that the video is paused. This is
calculated from the time taken to fetch 20 chunks minus 80 seconds. If this time negative,
there is no pause.

Table 1 shows the seconds of pause under different network conditions with models
trained with different reward weights. When the loss rate is lower than 6%, there is no
pause. When loss rate is 16%, the pause times are very varied and do not have a clear
trend. Table 2 shows the average bitrate under different network conditions with models
trained with different reward weights. When the network throughput is unlimited, it is
clear that model trained with larger α tends to select higher bitrate chunks. However,
when the network is congested, this trend becomes unclear again, especially when loss
rate is 16%. The uncertain trends under highly congested network conditions might be
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caused by the fact that high loss rate introduces much uncertainty to the training and
testing process, thus makes the result hard to interpret.

α
0.0 0.5 0.9 1.0

0% 0 0 0 0
λ 6% 0 0 0 0

16% 80 5 111 65

Table 1 Streaming Smoothness (s) of Different Reward Weight α and Loss Rate λ

α
0.0 0.5 0.9 1.0

0% 776 971 1944 2626
λ 6% 2626 1058 1497 1789

16% 2237 961 2626 1876

Table 2 Streaming Quality (kbps) of Different Reward Weight α and Loss Rate λ

The selection behaviour of different DQN models is illustrated in Figure 4. When there
is no loss, models trained with different reward weight 0.0, 0.5, 0.9, and 1.0 constantly
select chunks of different bitrates, which is consistent with expectation. When loss rate
is 6%, the model trained with α = 0.5 still selects 1000 kbps chunks. However, model
trained with α = 0.0 always selects highest bitrate chunks, which is not consistent with
the meaning of α. Models with α = 0.9 and α = 1.0 are very unstable, oscillating between
highest and lowest bitrates. At 16% loss rate, the behaviour of model trained with α = 0.5
is still the same. But model trained with α = 0.9 selects the highest bitrate chunks, while
other 2 models are not stable.

Both the policy evaluation and the behaviour analysis indicate that under highly con-
gested network, the DQN model fails to converge. This might be caused by the fact that
congestion introduces much uncertainty, making the DQN model unstable during training.

3.3 Future Work

Our experiments of comparing different DASH algorithms are only limited to very small
number of network conditions. It requires more experiments to explore the performance
of the algorithms to form a more solid conclusion. Also the DQN-based method should
be compared with the hand-crafted algorithms using the same QoE metrics to evaluate
its performance.
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